

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

Quantitative Social Research II Workshop 2: Selecting Explanatory Variables

Jose Pina-Sánchez

UNIVERSITY OF LEEDS

Workshop Aims

Workshop Aims

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- Discuss the difference between predicting and explaining
- Introduce stepwise regression methods
- Understand the implications of multicollinearity
 - $-\,$ learn how to detect and tackle this problem

Workshop Aims: Recap

Workshop Aims

Modelling Strategies

Modelling to Explain

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• Assumptions in the linear regression model $(Y = \alpha + \beta_k X_k + e)$:

- normality: residuals are normally distributed
- homoskedasticity: the variance of the residuals is constant
- independence: residuals are independent of each other

- no multicollinearity

- perfectly measured variables
- no missing data (other than missing at random)
- $-\,$ no unobserved confounders: we control for all common causes of X_1 and Y
- no reverse causality: Y does not cause X_1
- $-\,$ linearity: the effect of X_1 on Y is the same across the range of X_1

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• Modelling strategies are first determined by the type of response variable (Y, aka dependent or outcome variable) to be explored

Modelling Strategies

- last term: continuous (normally distributed), binary
- $-\,$ much more out there: duration data, count data, mixed data, etc.

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

• Modelling strategies are first determined by the type of response variable (Y, aka dependent or outcome variable) to be explored

Modelling Strategies

- last term: continuous (normally distributed), binary
- $-\,$ much more out there: duration data, count data, mixed data, etc.
- It is also crucial to think carefully about the right-hand side of the equation
 - which set of explanatory variables $(X_k$, aka regressors, covariates, independent variables) to include?
 - Question: what considerations have you been following so far?

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

• Modelling strategies are first determined by the type of response variable (Y, aka dependent or outcome variable) to be explored

Modelling Strategies

- last term: continuous (normally distributed), binary
- $-\,$ much more out there: duration data, count data, mixed data, etc.
- It is also crucial to think carefully about the right-hand side of the equation
 - which set of explanatory variables $(X_k$, aka regressors, covariates, independent variables) to include?
 - Question: what considerations have you been following so far?
- This is the focus of the next three workshops
 - today: predictive vs explanatory strategies, multicollinearity
 - W3: confounders, mediators, moderators, colliders
 - W4: polynomial regression, LOWESS curves

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

What's the Research Aim

- Depending on whether we seek to *predict* or to *explain* we will adopt different strategies
- We can often figure out which one it is from the research question
- <u>Question</u>: Are the following research questions aiming at predicting or explaining?
 - Can the onset of riots be identified using real time Tweets?
 - Are riots caused by economic inequality?
 - Is sentencing an art or a science? (Can we forecast judicial decisions?)

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

Predicting

- Inductive / exploratory
- Data driven

Competing Strategies

Explaining

- Deductive / confirmatory
- Theory driven

Modelling Strategies

Modelling to Explain

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

Predicting

- Inductive / exploratory
- Data driven
- X_k chosen to maximise predictability
- Not interested in interpretations of β_k

Competing Strategies

Explaining

- Deductive / confirmatory
- Theory driven
- X_k choice theoretically determined
- Interested in interpretations of β_k (causal explanations)

Modelling Strategies

Modelling to Explain

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

Predicting

- Inductive / exploratory
- Data driven
- X_k chosen to maximise predictability
- Not interested in interpretations of β_k
- Not so worried about violating assumptions
- Can employ unsupervised model selection

Competing Strategies

Explaining

- Deductive / confirmatory
- Theory driven
- X_k choice theoretically determined
- Interested in interpretations of β_k (causal explanations)
- Very worried about violating assumptions
- Model selection should be supervised

Modelling Strategies

$\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- Last term you reviewed good practices for selecting explanatory variables
 - let theory dictate the selection process
 - aim to include only relevant variables (variables of interest but also potential confounders)
 - the principle of parsimony (simpler is better)

Modelling Strategies

$\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- Last term you reviewed good practices for selecting explanatory variables
 - $-\,$ let theory dictate the selection process
 - aim to include only relevant variables (variables of interest but also potential confounders)
 - the principle of parsimony (simpler is better)
- This is to facilitate estimation of the model, interpretation of results, and to avoid bias
 - prevent P-hacking (1 in 20 coefficient estimates will be significant by chance even if they are just noise)
 - prevent HARKing (hypothesising after results are known)

Modelling Strategies

$\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- Last term you reviewed good practices for selecting explanatory variables
 - $-\,$ let theory dictate the selection process
 - aim to include only relevant variables (variables of interest but also potential confounders)
 - the principle of parsimony (simpler is better)
- This is to facilitate estimation of the model, interpretation of results, and to avoid bias
 - prevent P-hacking (1 in 20 coefficient estimates will be significant by chance even if they are just noise)
 - prevent HARKing (hypothesising after results are known)
 - $-\,$ some models can be too complex to be estimated, and/or take too long

Modelling Strategies

$\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- Last term you reviewed good practices for selecting explanatory variables
 - $-\,$ let theory dictate the selection process
 - aim to include only relevant variables (variables of interest but also potential confounders)
 - the principle of parsimony (simpler is better)
- This is to facilitate estimation of the model, interpretation of results, and to avoid bias
 - prevent P-hacking (1 in 20 coefficient estimates will be significant by chance even if they are just noise)
 - prevent HARKing (hypothesising after results are known)
 - $-\,$ some models can be too complex to be estimated, and/or take too long
 - avoid overfitting (loss of degrees of freedom)
 - avoid multicollinearity

UNIVERSITY OF LEEDS

Workshop Aims

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

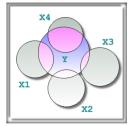
• Absence of severe multicollinearity is one of the assumptions we invoke when specifying regression models

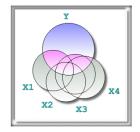
Multicollinearity

- Can arise as result of using too many and/or too highly correlated explanatory variables
- The model cannot identify the variability on Y associated to each X_k
 - regression coefficient estimates (β_k) are unstable
 - their measures of uncertainty (e.g. SE_k) are larger they could be \rightarrow false negatives (type-II errors) more likely

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$


Multicollinearity


 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

Which Model Is Affected by Multicollinearity?

Source: Quantitative Methods for Linguistic Data

<u>Question</u>: for the graph on the right, which of the X_k would be most affected?

Modelling Strategies

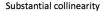
 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$


Multicollinearity

Modelling to Predict

Stepwise Regression

Recap


X4 Y X1 X2

Which Model Is Affected by

Multicollinearity?

Source: Quantitative Methods for Linguistic Data

Question: for the graph on the right, which of the X_k would be most affected?

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• Most commonly detected by looking at a correlation matrix with your potential explanatory variables

Detecting Multicollinearity

- $-\,$ the rule of thumb is to look out for correlations $>0.8\,$
- yet, this diagnostic is based just on pairwise comparisons
- multicollinearity can also take place when variables are moderately correlated, but there are too many of them

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• Most commonly detected by looking at a correlation matrix with your potential explanatory variables

Detecting Multicollinearity

- $-\,$ the rule of thumb is to look out for correlations >0.8
- yet, this diagnostic is based just on pairwise comparisons
- multicollinearity can also take place when variables are moderately correlated, but there are too many of them
- Better to rely on the Variance Inflation Factor (VIF)
 - $-\,$ the VIF estimates how much the variance of a regression coefficient is inflated due to multicollinearity in the model
 - $-VIF_k = \frac{1}{1-R_k^2}$, where the R_k^2 is obtained by taking a predictor (X_k) and regressing it against every other predictor in the model

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• Most commonly detected by looking at a correlation matrix with your potential explanatory variables

Detecting Multicollinearity

- $-\,$ the rule of thumb is to look out for correlations >0.8
- yet, this diagnostic is based just on pairwise comparisons
- multicollinearity can also take place when variables are moderately correlated, but there are too many of them
- Better to rely on the Variance Inflation Factor (VIF)
 - $-\,$ the VIF estimates how much the variance of a regression coefficient is inflated due to multicollinearity in the model
 - $-VIF_k = \frac{1}{1-R_k^2}$, where the R_k^2 is obtained by taking a predictor (X_k) and regressing it against every other predictor in the model
 - rule of thumb: if $VIF_k > 5$ then k is considered problematic
 - interpretation: the factor by which the variance of a regression coefficient (SE_K^2) is inflated compared to what it would be if there was no correlation with other predictors

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• <u>Question</u>: how do you deal with problems of multicollinearity?

Tackling Multicollinearity

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• <u>Question</u>: how do you deal with problems of multicollinearity?

Tackling Multicollinearity

- Drop variables with a VIF>5
 - this can lead to arbitrary choices
 - difficult to justify when the correlated variables are theoretically important

• Aggregate variables into an index/scale

- $-\,$ a possibility if various variables are tapping on the same latent concept
- we can include a new single variable (the index) in the model, and remove all other variables used to create it (the items)
- e.g. in exploring the presence of labour discrimination we can simply use a scale of social class, rather than employment status, level of education, salary, etc.
- $-\,$ you saw how to create indexes using averages last term; in W6 we will learn how to use latent variable estimation

UNIVERSITY OF LEEDS

Modelling to Predict

Workshop Aims

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

$\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- We do not care about the robustness of the regression coefficients since we do not need to interpret them
- All we care about is the accuracy with which the model predicts the outcome variable
- We should use as many <u>useful</u> predictors as possible

Model Selection

Workshop Aims

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

• <u>Question</u>: how can we determine whether the predictors we introduce are useful?

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• <u>Question</u>: how can we determine whether the predictors we introduce are useful?

- $-\,$ we have considered p-values and the R^2 (or the predictive accuracy of a logistic model)
- by definition, the more variables included in the model, the higher its R^2 (or the predictive accuracy of a logistic model)...

Model Selection

UNIVERSITY OF LEEDS

Workshop Aims

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

$\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- <u>Question</u>: how can we determine whether the predictors we introduce are useful?
 - $-\,$ we have considered p-values and the R^2 (or the predictive accuracy of a logistic model)
 - by definition, the more variables included in the model, the higher its R^2 (or the predictive accuracy of a logistic model)...

Model Selection

- but, including noisy predictors can reduce predictive accuracy
- we can see that by using two samples of the same population, or by splitting our sample into a *train* and a *test* sample
- also, a variable can be a good predictor even if it is not statistically significant
- we should undertake variable selection based on criteria that penalises adding variables, such as AIC, or the adjusted R^2

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• ok, so we use a *train* and a *test* sample, AIC to select useful predictors...

Stepwise Regression

• but how do we undertake the model comparison process that will give us the best model?

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

• ok, so we use a *train* and a *test* sample, AIC to select useful predictors...

- but how do we undertake the model comparison process that will give us the best model?
 - do we add predictors one by one until adding new ones does not improve the AIC? (forward selection)

Stepwise Regression

- do we throw them all in the model and proceed to remove them sequentially until the AIC stops improving? (backward selection)

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

 $\begin{array}{c} \text{Modelling to} \\ Predict \end{array}$

Stepwise Regression

Recap

- ok, so we use a *train* and a *test* sample, AIC to select useful predictors...
- but how do we undertake the model comparison process that will give us the best model?
 - do we add predictors one by one until adding new ones does not improve the AIC? (forward selection)

Stepwise Regression

- do we throw them all in the model and proceed to remove them sequentially until the AIC stops improving? (backward selection)
- how do we choose which variables go in/out first?
- predictors can become more or less important depending on what other variables are already in the model
- $-\,$ e.g. years of experience might appear less important in predicting salary if workers' age is already in the model, and vice versa
- $-\,$ also, if the list of predictors is long this could take us some time, that's why the above strategies are normally unsupervised

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

• Stepwise selection can be used to iteratively add and remove predictors, a combination of forward and backward selection

Stepwise Selection

- There are three procedures involved in the algorithm
 - starts with no predictors, then sequentially add the most consequential variables (forward selection)
 - after adding each new variable, remove any variables that no longer provide an improvement in the model fit (backward selection)
 - until the model cannot be improved by adding or removing variables
- Model selection is a key area in machine learning, with new methods being developed every year, e.g.
 - random forests
 - Bayesian model averaging

Modelling Strategies

 $\begin{array}{c} \text{Modelling to} \\ Explain \end{array}$

Multicollinearity

Modelling to Predict

Stepwise Regression

Recap

• Think about what are you trying to accomplish through your research: *explain* or *predict*

Recap

- $-\,$ the first step in designing your variable selection strategy
- If we seek to explain then parsimony is key
 - avoiding problems of multicollinearity and overfitted models
 - $-\,$ next week we will learn the importance of distinguishing between confounder, mediator and collider effects
- If we seek to predict we will include as many useful predictors as we can gather
 - the model selection can be unsupervised
 - using methods such as stepwise regression
- To learn more about stepwise regression you can read: Ruczinsky Variable selection